Functional architecture of the light-responsive chalcone synthase promoter from parsley.

نویسندگان

  • P Schulze-Lefert
  • M Becker-André
  • W Schulz
  • K Hahlbrock
  • J L Dangl
چکیده

We have combined in vivo genomic footprinting and light-induced transient expression of chalcone synthase promoter derivatives in parsley protoplasts to identify cis sequences regulating light activation. The parsley chalcone synthase promoter contains two cis "units" that are light-responsive. Each unit is composed of short DNA stretches of approximately 50 base pairs, and each contains two in vivo footprints. One of the footprints in each unit covers a sequence that is highly conserved among other light- and stress-regulated plant genes. The other footprinted sequences in each unit are not related to each other. The TATA distal light-responsive unit is inherently weak but can compensate partially for the loss of the stronger TATA proximal unit. Levels of light-induced expression from either can be influenced by the presence of a region of approximately 100 base pairs located upstream of the TATA distal light-responsive unit. Combination of the light-responsive units and upstream region generates a synergistic response to light. We speculate that functional compensation generated by nonidentical, but sequence-related, cis units foreshadows combinatorial diversity of cognate trans factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulatory elements required for light-mediated expression of the Petroselinum crispum chalcone synthase gene.

Chalcone synthase (CHS) catalyzes the committed enzymatic step in flavonoid biosynthesis. In parsley (Petroselinum crispum), CHS is encoded by a single gene locus. Transcriptional activation of the gene in response to UV-containing white light has been demonstrated. Analysis of the CHS gene promoter by in vivo footprinting revealed four short sequences, designated Boxes I, II, III, and IV, whic...

متن کامل

Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures.

UV irradiation stimulates expression of the gene encoding the key enzyme chalcone synthase (CHS), which leads to the generation of protective flavonoids in parsley cell cultures. CHS transcripts increase after 3 to 4 hr, and early genes are involved in the signal transduction to the CHS promoter. By using the fluorescent differential display technique in a large-scale screening, several early U...

متن کامل

UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley.

The UV light-induced synthesis of UV-protective flavonoids diverts substantial amounts of substrates from primary metabolism into secondary product formation and thus causes major perturbations of the cellular homeostasis. Results from this study show that the mRNAs encoding representative enzymes from various supply pathways are coinduced in UV-irradiated parsley cells (Petroselinum crispum) w...

متن کامل

Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores.

Four short nucleotide sequences (boxes I to IV) contribute to the light responsiveness of the parsley chalcone synthase promoter. The sequence-related boxes II and III resemble several plant, viral, and bacterial promoter elements that share ACGT core sequences and are associated with diversely regulated genes. We have analyzed the binding characteristics and protein-protein interactions of fac...

متن کامل

Enzymes of General Phenylpropanoid Metabolism and of Flavonoid Glycoside Biosynthesis in Parsley: Differential Inducibility by Light during the Growth of Cell Suspension Cultures.

Several enzymes of phenylpropanoid metabolism showed large changes in their inducibility by light during the growth cycle of cell suspension cultures from parsley (Petroselinum hortense Hoffm.). Two of the three enzymes of general phenylpropanoid metabolism (group I) and six of the approximately 13 enzymes of the flavone and flavonol glycoside pathways (group II) were investigated. Both enzymes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 1 7  شماره 

صفحات  -

تاریخ انتشار 1989